Fermat$501553$ - vertaling naar Engels
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Fermat$501553$ - vertaling naar Engels

POSITIVE INTEGER OF THE FORM (2^(2^N))+1
Fermat prime; Fermat numbers; 4294967297 (number); Fermat primes; Fermat Numbers; Generalized Fermat number; Generalized Fermat prime; Fermat Primes; Fermat Prime; 4294967297; Primality of Fermat numbers; Factorization of Fermat numbers; Generalized Fermat numbers; Generalized Fermat primes; Generalized Fermat
  • Number of sides of known constructible polygons having up to 1000 sides (bold) or odd side count (red)

Fermat      
n. Pierre de Fermat (1601-1665) matemático francés que fundó la base de la ciencia numérica y la probabilidad (junto con Pascal)

Definitie

Fermat prime
<mathematics> A prime number of the form 2^2^n + 1. Any prime number of the form 2^n+1 must be a Fermat prime. Fermat conjectured in a letter to someone or other that all numbers 2^2^n+1 are prime, having noticed that this is true for n=0,1,2,3,4. Euler proved that 641 is a factor of 2^2^5+1. Of course nowadays we would just ask a computer, but at the time it was an impressive achievement (and his proof is very elegant). No further Fermat primes are known; several have been factorised, and several more have been proved composite without finding explicit factorisations. Gauss proved that a regular N-sided polygon can be constructed with ruler and compasses if and only if N is a power of 2 times a product of distinct Fermat primes. (1995-04-10)

Wikipedia

Fermat number

In mathematics, a Fermat number, named after Pierre de Fermat, who first studied them, is a positive integer of the form

F n = 2 2 n + 1 , {\displaystyle F_{n}=2^{2^{n}}+1,}

where n is a non-negative integer. The first few Fermat numbers are:

3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, ... (sequence A000215 in the OEIS).

If 2k + 1 is prime and k > 0, then k must be a power of 2, so 2k + 1 is a Fermat number; such primes are called Fermat primes. As of 2023, the only known Fermat primes are F0 = 3, F1 = 5, F2 = 17, F3 = 257, and F4 = 65537 (sequence A019434 in the OEIS); heuristics suggest that there are no more.